Skip to main content

Research

Research

The research projects in the Walton group are linked through the design, synthesis and evaluation of organometallic complexes. Specific projects include ruthenium pi-arene complexes in catalysis and organometallic platinum group metal complexes as therapeutic agents.

We are studying Ru(η6-arene)Ln complexes as catalysts. Binding of arenes to Ru increases their reactivity towards several processes (SNAr, C–H activation, Trifluoromethylation etc.). However, the Ru–(η6-arene) bond is strong and a stoichiometric amount of Ru is required. Our goal is to develop systems in which the rate of arene dissociation/exchange is matched with the rate of arene reactivity, leading to a catalytic cycle. This is achieved through choice of ligand, Ln, and incorporation of tethers, lowering the activation barrier for dissociation. Read about our latest results in this area If you would like to discuss projects in this area, please contact [email protected].

Piano stool metal complexes have been explored for several decades as potential anticancer agents. Histone Deacetylase (HDAC) enzymes are excellent targets for such therapeutic activity. We recently published the first examples of Ru(II) and Rh(III) piano stool HDAC inhibitors (Figure, ChemPlusChem, 2016, DOI:10.1002/cplu.201600413). The novel complexes have anticancer activity comparable to the clinically used HDAC inhibitor SAHA. Our current work is exploring the design (using computational modelling) and synthesis of potent and isoform-selective HDAC inhibitors. We combine organic and inorganic synthesis to produce series of Ru, Os, Ir and Rh complxes. Analysis of these complexes include a range of enzyme binding assays, cytotoxicity studies and measurement of interactions with biomolecules using NMR, MS, IR and fluorescence spectroscopy. If you would like to discuss projects in this area, please contact [email protected].